Journal of Philosophical Investigations

نوع مقاله : مقاله علمی- پژوهشی

نویسنده

استادیار پژوهشکده مطالعات بنیادین علم و فناوری دانشگاه شهید بهشتی، تهران، ایران.

چکیده

برهان حفره، بعد از مقاله ارمن و نورتن(1987) به یکی از مباحث اصلی در فلسفه فضا-زمان تبدیل شده است که بر اساس آن نوع خاصی از جوهر‌‌گرایی (جوهرگرایی خمینه‌ای) قابل دفاع نخواهد بود؛ زیرا، به ناموجبیت رادیکال منجر می‌شود. در این مقاله، می‌کوشیم‌‌‌ نشان دهیم اولا، نامگذاری جوهرگرایی خمینه‌‌‌ای مناسب نیست؛ چون، همان‌طور که برخی از فلاسفه گفته‌‌‌‌اند، نقاط خمینه را نمی‌توان واجد این همانی مستقل دانست. ثانیا، می‌توان با تعهد واقع‌گرایی ساختاری وجودی تلقی مناسبی از جوهرگرایی خمینه‌‌‌ای ارائه کرد که بر اساس برهان حفره به ناموجبیت رادیکال منجر نمی‌شود؛ در نتیجه، برهان حفره در مورد آن کارگر نمی‌افتد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Hole Argument, Manifold Substantivalism, and Ontic Structural Realism

نویسنده [English]

  • Saeed Masoumi

Assistant Professor, Institute for Research in Science and Technology Studies, Shahid Beheshti University, Tehran, Iran

چکیده [English]

The hole argument has become one of the main issues in the philosophy of space-time after the article by Earman and Norton (1987), according to which a certain version of substantivalism (manifold substantivalism) cannot be defended because it brings about to a radical indeterminism. In this article, we try to show that, first, the naming of manifold substantivalism is not appropriate since as some philosophers have said, manifold points cannot be considered to have an independent identity. Second, with a commitment to ontic structural realism, it is possible to offer a proper understanding of manifold substantivalism, which according to the hole argument, does not lead to the radical indeterminism. As a result, the hole argument does not arise, simply. Thus, the last point is that the fact that structural realism is able to solve the problem of the hole argument can itself be seen as considerable evidence in favor of this philosophical position, and thus, the degree of its confirmation goes up.

کلیدواژه‌ها [English]

  • Substantivalism
  • The Hole Argument
  • Ontic Structural Realism
  • Spacetime
  • Relationalism
-   Adams, R. (1979) "Primitive Thisness and Primitive Identity", Journal of Philosophy, Vol. 76: 5–26.
-   Brighouse, C. (1994) "Spacetime and Holes", PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 117–25.
-   Butterfield, J. (1987) "Substantivalism and Determinism", International Studies in the Philosophy of Science, Vol. 2(1):‌‌‌ 10-32.
-   Butterfield, J. (1989) "The Hole Truth", British Journal for Philosophy of Science, Vol. 40: 1–28.
-   Carroll, S. (2004) Spacetime and Geometry: An Introduction to General Relativity, NewYork, Addison Wesley.
-   Cowling, S. (2016) "Haecceitism", https://plato.stanford.edu/entries/haecceitism.
-   Dorato, M. (2000) "Substantivalism, Relatioism, and Structurtal Spacetime Realism", Foundations of Physics, Vol. 30 (10): 1605–1628.
-   Earman, J. (1989) World Enough and Space-Time: Absolute versus Relational Theories of Space and Time, Cambridge, MA, MIT Press.
-   Earman, J.; Norton, J. (1987) "What price spacetime substantivalism? The hole story", British Journal for the Philosophy of Science, Vol. 38: 515–525.
-   Esfeld, M.; Lam, V. (2008) "Moderate structural realism about space-time", Synthese, Vol. 160: 27–46.
-   Fletcher, S. (2020) "On representational capacities, with an application to general relativity", Foundations of Physics, Vol. 50: 228–249.
-   Forrest (2010) "The Identity of Indiscernibles", https://plato.stanford.edu/entries/ identity-indiscernible.
-   French, S. (2010) "The Interdependence of Structure, Objects and Dependence", Synthese, Vol. 175: 89–109.
-   French, S. (2014) The Structure of the World Metaphysics and Representation, Oxford, Oxford university press.
-   French, S. (2019) "Identity and Individuality in Quantum Theory", https://plato. stanford.edu/entries/qt-idind.
-   French, S.; Krause, D. (2006) Identity in Physics, Oxford, Oxford University Press.
-   French, S.; Redhead, M. (1988) "Quantum Physics and the Identity of Indiscernibles", The British Journal for the Philosophy of Science, Vol. 39 (2): 233-246.
-   Friedman, M. (1983) Foundations of Space-Time Theories, Princeton: Princeton University Press.
-   Herstein (1975) TOPICS IN ALGEBRA, New York, John Wiley & Sons, Inc.
-   Hoefer, C. (1996) "The Metaphysics of Space-Time Substantivalism", The Journal of Philosophy, Vol. 93(1): 5-27.
-   Hoefer, C. (2016) Causal Determinism, https://plato.stanford.edu/entries/ determinism -causal.
-   Huggett, N.; Hoefer, C. (2015) "Absolute and Relational Theories of Space and Motionhttps", https://plato.stanford.edu/entries/spacetime-theories
-   Humberstone, I. (1996) "Intrinsic/extrinsic", Synthese, Vol. 108: 205–267.
-   Kim, J. (1982) "Psychophysical Supervenience", Philosophical Studies, Vol. 41: 51-70.
-   Ladyman, J. (2007) "On the Identity and Diversity of Objects in a Structure", Proceedings of the Aristotelian Society Supplementary Volume, LXXXI: 23–43.
-   Ladyman, J. (2014) "Structural Realism", https://plato.stanford.edu/entries/ structural-realism.
-   Lee, J. M. (2003) Introduction to Smooth Manifolds, New York, Springer.
-   Lewis, D. (1983a) "Extrinsic Properties", Philosophical Studies, Vol. 44, 197-200.
-   Lewis, D. (1983b) "New Work for a Theory of Universals", Australasian Journal of Philosophy, Vol. 61: 343-77.
-   Malament, D. (2012) Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, Chicago, IL: University of Chicago Press.
-   Marshall, D.; Weatherson, B. (2018). "Intrinsic vs. Extrinsic Properties", https:// plato.stanford.edu/entries/intrinsic-extrinsic.
-   Masoumi, S. (2018) "General covariance, Friedman and Earman’s viewpoints", Philosophy of Science, Vol. 8, Number, Vol. 16: 107-137.
-   Masoumi, S. (2020) "Another Look at Substantivalism," manuscript.
-   Munkres, J. R. (1975) Topology, A First Course, Prentice-Hall.
-   Norton, J. D. (2019) "The Hole Argument", https://plato.stanford.edu/entries /spacetime-holearg/
-   Norton, J. (2020) "The Hole Argument against Everything", Foundations of Physics, Vol. 50: 360–378.
-   O’Neill, B. (1983) Semi-Riemannian Geometry, with Applications to Relativity, San Diego, CA: Academic Press.
-   Pooley, O. (2013) Substantivalist and Relationalist Approaches to Spacetime, in Batterman, R. (ed.), The Oxford Handbook of Philosophy of Physics, Oxford: Oxford University Press.
-   Rickles, D. (2008) Symmetry, Structure, and Spacetime, Oxford: Elsevier.
-   Roberts, B. W. (2020) "Regarding Leibniz Equivalence", Foundations of Physics,Vol. 50: 250–269.
-   Roberts, B. W.; Weatherall, J. O. (2020) "New Perspectives on the Hole Argument", Foundations of Physics, Vol. 50: 217–227.
-   Robinson, (2018) "Substance", https://plato.stanford.edu/entries/substance.
-   Ross, D., et al. (2007) "In Defence of Scientism", Every Thing Must Go: Metaphysics Naturalized, Oxford: Oxford University Press.
-   Rynasiewicz, R. (1996) "Absolute versus relational space-time: An outmoded debate?" J. Phil. Vol. 43(1): 279-306.
-   Stachel, J. (1993) "The Meaning of General Covariance", in J. Earman, A. I. Janis, G. J. Massey and N. Rescher (eds.), Philosophical Problems of the Internal and External Worlds: Essays on the Philosophy of Adolf Gru¨nbaum, Pittsburgh, PA: University of Pittsburgh Press: 129–60.
-   Stachel, J. (2014) "The Hole Argument and Some Physical and Philosophical Implications", Living Rev. Relativity, Vol. 17, 1.
-   Stein, H. (1989) "Yes, but...: Some skeptical remarks on realism and antirealism", Dialectica, Vol. 43: 46-65.
-   Weatherall, J. O. (2018) "Regarding the hole argument", The British Journal for the Philosophy of Science, Vol. 69 (2): 329–350.
-   Wolff, J. (2011) "Do Objects Depend on Structures?" The British Journal for the Philosophy of Science, Vol. 63 (3): 1-19.
CAPTCHA Image