Journal of Philosophical Investigations

نوع مقاله : مقاله علمی- پژوهشی

نویسندگان

1 پژوهشگر پسادکتری، گروه فلسفه، دانشکده ادبیات و علوم انسانی، دانشگاه اصفهان، اصفهان، ایران

2 دانشیار فلسفه، گروه فلسفه، دانشکده ادبیات و علوم انسانی، دانشگاه اصفهان، اصفهان، ایران

چکیده

بنابر تعریف نظریه-برهانی از مفهوم پیامد منطقی، جملۀ  پیامد منطقی مجموعه مقدّمات  محسوب می‌شود اگر از  برهانی برای  وجود داشته باشد. تارسکی استدلال می‌کند که با افزایش هر تعداد قاعده به نظام‌های استنتاجی، همواره در آن نظام مواردی وجود دارد که جمله‌ای شهوداً پیامد منطقی مجموعه‌ای از جملات است، درحالی‌که در آن نظام ارائۀ برهانی برای آن جمله ممکن نیست. از این‌رو تعریف نظریه-برهانی نمی‌تواند بیانگر مفهوم شهودی پیامد منطقی باشد. مقالۀ حاضر به بررسی نقد تارسکی به تعریف نظریه-برهانی اختصاص دارد. بر اساس بررسی ما مشخّص شد که نقد تارسکی تعریف نظریه-برهانی را با مشکلی جدّی مواجه می‌کند؛ امّا این مطلب به این معنا نیست که تعریف نظریه-مدلی نسبت به تعریف نظریه-برهانی ارجحیت دارد؛ زیراکه نقدهایی قابل‌قبول نیز به رویکرد نظریه-مدلی وارد است. به‌نظر می‌رسد هیچ‌کدام از این دو رویکرد در ارائۀ تعریفی دقیق از مفهوم شهودی پیامد منطقی به‌منظور کاربرد در نظام‌های استنتاجی موفّق نیستند. بااین‌حال در نظام‌های استنتاجی مختلف می‌توان تقریری از هر یک از این دو رویکرد ارائه داد به‌گونه‌ای که در انسجام با سایر دیدگاه‌های متافیزیکی و معرفت‌شناختی مربوط به آن نظام بوده، و بنابر اهداف کاربردی قابل‌قبول باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Proof-Theoretic Approach to Logical Consequence, and Tarski’s Criticism of it

نویسندگان [English]

  • Hamid Alaeinejad 1
  • Morteza Hajhosseini 2

1 Postdoc Researcher, Department of Philosophy, Faculty of Literature and Humanities, University of Isfahan, Isfahan, Iran

2 Associate Professor, Department of Philosophy, Faculty of Literature and Humanities, University of Isfahan, Isfahan, Iran

چکیده [English]

According to the proof-theoretic definition of the concept of logical consequence, the sentence X is a logical consequence of the set of assumptions Γ if there is an argument from Γ for X. Tarski argues that by adding any number of rules to inferential systems, there are always cases in which a sentence is intuitively the logical consequence of a set of sentences, whereas in that system it is not possible to provide an argument for that sentence. Hence, the proof-theoretic definition cannot express the intuitive concept of logical consequence. The present article examines Tarski's critique of proof-theoretic definition. Based on our study, Tarski's critique poses a serious problem to the proof-theoretic definition, but this does not mean that the model-theoretic definition is superior to proof-theoretic definition, because there are also acceptable critiques of model-theoretic definition. It seems that neither of these approaches succeed in providing an accurate definition of the intuitive concept of logical consequence for deductive systems. However, in different deductive systems, an interpretation of each of these two approaches can be presented in a way that it is consistent with other metaphysical and epistemological perspectives related to that system, and it is acceptable according to the practical goals.

کلیدواژه‌ها [English]

  • the concept of logical consequence
  • proof-theoretic definition
  • model-theoretic definition
  • model-theoretic semantics
  • Tarski
Alaeinejad, H. & Hajhosseini, M. (2021). Evaluating Etchemendy's Criticisms of Tarski’s Analysis of Logical Consequence, Philosophical Investigations. DOI: 10.22034/jpiut.2021.47243.2920.
Beall, J.C, Restall, G. (2006). Logical Pluralism, Oxford University Press.
Beall, J. C. & et al. (2019). Logical Consequence, in: The Stanford Encyclopedia of Philosophy Edward N. Zalta (ed.). https://plato.stanford.edu/archives/spr2019/entries/logical-consequence/
Carnap, R. (1937). Logical Syntax of Language, Translated by A. Smeaton, Routledge.
Carnap, R. (1948), Introduction to Semantics, Harvard University Press.
Dummett, M. (1993). the Logical Basis of Metaphysics, Harvard University Press.
Etchemendy, J. (1990). the Concept of Logical Consequence, Harvard University Press.
Etchemendy, J. (2008). Reflections on Consequence, in New Essays on Tarski and Philosophy, Edited by D. Patterson, Oxford University Press.
Ferrari, F. & Orlandelli, E. (2021). Proof-Theoretic Pluralism, Synthese, Vol. 198, 4879-4903.
Garson, J. W. (2013). What Logics Mean, From Proof Theory to Model Theoretic Semantics, Cambridge University Press.
Gentzen, G. (1964). Investigations into Logical Deduction”, American Philosophical Quarterly, 1(4), 288–306.
Gödel, K. (1986). on Formally Undecidable Propositions of Principia Mathematica and Related Systems I,” in Collected Works I. Publications 1929–1936, Edited by S. Feferman and others, pp. 144-195, Oxford University Press.
Krynicki, M. & Lachlan, A. H. (1979). On the Semantics of the Henkin Quantifier,” in the Journal of Symbolic Logic, 44(2), 184-200.
Leitgeb, H. & Carus, A. (2021). Rudolf Carnap, in: The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.). https://plato.stanford.edu/archives/sum2021/entries/carnap/
McKeon, M. W. (2010). The Concept of Logical Consequence, an Introduction to Philosophical Logic, Peter Lang.
Prawitz, D. (1965), Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell.
Prawitz, D. (2006). Meaning Approached Via Proofs, Synthese, 148(3), 507-524.
Rouilhan, P. (2009). Carnap on Logical Consequence for Languages I and II”, in Carnap’s Logical Syntax of Language, Edited by P. Wagner, Palgrave Macmillan.
Shapiro, S. (2005). Logical Consequence, Proof Theory and Model Theory, in The Oxford Handbook of Philosophy of Mathematics and Logic, Edited by S. Shapiro, Oxford University Press.
Schroeder-Heister, P. (2018). Proof-Theoretic Semantics, The Stanford Encyclopedia of Philosophy (Spring 2018 Edition), Edward N. Zalta (ed.). https://plato.stanford.edu/archives/spr2018/entries/proof-theoretic-semantics/
Sundholm, B. G., (2006). Varieties of Consequence, in A Companion to Philosophical Logic, Edited by D. Jacquette, pp. 241-255, Blackwell Publishing.
Tarski, A. (1956a). the Concept of Truth in Formalized Languages, Translated by J. H. Woodger, in Logic, Semantics, Metamathematics, Papers from 1923 to 1938, pp. 152-278, Clarendon Press.
Tarski, A. (1956b). Some Observation on the Concept of -Consistency and -Completeness, Translated by J. H. Woodger, in Logic, Semantics, Metamathematics, Papers from 1923 to 1938, pp. 279-295, Clarendon Press.
Tarski, A. (2002). On the Concept of Following Logically, Translated by M. Stroińska and D. Hitchcock, in History and Philosophy of Logic, 23(3), 155-196.
Tennant, N. (2020). Inferentialism, Logicism, Harmony, and a Counterpoint,” in Logic, Language, and Mathematics, Themes from the Philosophy of Crispin Wright, Edited by A. Miller, Oxford University Press.
Wansing, H. (2000). The Idea of a Proof-Theoretic Semantics and the Meaning of the Logical Operations, Studia Logica, 64(1), 3–20.
CAPTCHA Image