Bolzano, B. (1851). Paradoxien des Unendlichen, Leipzig: C. H. Reclam.
- Cantor, G. (1932). Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Germany: Springer.
- Dedekind, R. (1932). Gesammelte mathematische Werke. Bd. 3. Herausgegeben von R. Fricke, E. Noether, and Ö. Ore. Braunschweig: Vieweg. Dugac, Pierre.
- Dieck, T. T. (2013). “Die Göttinger Mathematiker Gauß, Riemann, Klein und Hilbert”. In Die Geschichte der Akademie derWissenschaften zu Göttingen. Teil 1, Herausgegeben von Christian Starck und Kurt Schönhammer, Berlin: De Gruyter, pp. 135-160.
- Ewing, A. C. (1938). A Short Commentary on Kant's Critique of Pure Reason. Chicago: University of Chicago Press.
- Heidegger, M. (1967). Sein und Zeit. Tübingen: Max Niemeyer Verlag.
- Henrich, D. (2008). Between Kant and Hegel: Lectures on German Idealism. United States: Harvard University Press.
- Kant, I. (1956). Kritik der reinen Vernunft. Herausgegeben von Jens Timmermann. Hamburg: Felix Meiner.
- Kant, I. (1998). Critique of Pure Reason. Edited and translated by Paul Guyer, Allen W. Wood. United States: United Kingdom: Cambridge University Press.
- Kline, M. (1990). Mathematical Thought From Ancient to Modern Times. Vol. 3. United Kingdom: Oxford University Press.
- Kuhn, T. S. (1996). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
- McCarty, D. C. (1995) “Mysteries of Dedekind”, in From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Edited by Jaakko Hintikka. Netherlands: Springer Netherlands.
- Paugh, C. C. (2002). Real Mathematical Analysis. New York: Springer-Verlag.
- Pesic, P. (2007). Beyond Geometry: Classic Papers from Riemann to Einstein. United States: Dover Publications.
- Pippin, R. (2014). “The Significance of Self-Consciousness in Idealist Theories of Logic”. Proceedings of the Aristotelian Society, 114, new series, 145-166.
- Riemann, B. (2007), “On the Hypotheses That Lie at the Foundations of Geometry” in Beyond Geometry: Classic Papers from Riemann to Einstein. Edited by Peter Pesic. New York: Dover Publications.
- Shapiro, S. (2000), Thinking about Mathematics: The Philosophy of Mathematics, Oxford University Press.
- Spivak, M. (1979). A Comprehensive Introduction to Differential Geometry. Vol 2. Berkeley: Publish or Perish.
- Steiner, H. G. (1980). Mengenlehre. In Historisches Wörterbuch der Philosophie (Band 5). Hg. Joachim Ritter, Karlfried Gründer. Basel/ Stuttgart: Schwabe Verlag.
Send comment about this article